skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Adloff, Markus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The end-Permian mass extinction (EPME) is associated with the loss of approximately 80–90 % marine species and 70 % terrestrial taxa. Massive greenhouse gas emissions from activities of the Siberian Traps Large Igneous Province (ST-LIP) and arc volcanisms are thought to be the trigger of the EPME. Global temperatures rose significantly following the EPME, and such extreme warmth persisted into the Early Triassic, which may have led to enhanced silicate weathering, and increased river runoff and sediment accumulation rate. However, ecosystem recovery was delayed by at least five million years after the EPME. One leading hypothesis attributes this protracted recovery to sustained atmospheric CO₂ accumulation, resulting from volcanic emissions from the ST-LIP that overwhelmed the normal Earth surface carbon cycle. To evaluate this, we synthesize geochemical and sedimentological records of continental weathering across the Permian–Triassic (PT) transition, drawing on a suite of proxies including major elements-based proxies, strontium (87/86Sr and δ88/86Sr), osmium (187Os/188Os), lithium (δ7Li), magnesium (δ26Mg) and calcium (δ44Ca) isotopes. We highlight the strengths and limitations of each proxy and assess how chemical and physical weathering may have responded to the environmental perturbations across the PT transition. Collectively, these records can help test the hypothesis that the silicate weathering feedback were insufficient to counteract elevated CO2 levels, thereby failing to stabilize Earth’s climate during the prolonged Early Triassic warmth. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  2. null (Ed.)
    Abstract. The metals strontium (Sr), lithium (Li), osmium (Os) and calcium (Ca), together with their isotopes, are important tracers of weathering and volcanism – primary processes which shape the long-term cycling of carbon and other biogeochemically important elements at the Earth's surface. Traditionally, because of their long residence times in the ocean, isotopic shifts in these four elements observed in the geologic record are almost exclusively interpreted with the aid of isotope-mixing, tracer-specific box models. However, such models may lack a mechanistic description of the links between the cycling of the four metals to other geochemically relevant elements, particularly carbon, or climate. Here we develop and evaluate an implementation of Sr, Li, Os and Ca isotope cycling in the Earth system model cGENIE. The model offers the possibility to study the dynamics of these metal systems alongside other more standard biogeochemical cycles, as well as their relationship with changing climate. We provide examples of how to apply this new model capability to investigate Sr, Li, Os and Ca isotope dynamics and responses to environmental change, for which we take the example of massive carbon release to the atmosphere. 
    more » « less